轻点灬大ji巴太粗太长了h-轻点灬大ji巴太粗太长了啊h-轻点灬大ji巴太粗太长了爽文-轻点灬大ji巴太大太深了-japan高清视频乱xxxxx-jiuma和我啪啪

新聞動態
NEWS
Location:Chinese Academy of Sciences > NEWS  > Carbon Nanotubes Carbon Nanotubes

Rice Researchers Determine Electrical Properties of Nanocones and Other Graphene Forms

Come: Chinese Academy of Sciences    Date: 2015-07-01 10:25:51


 Flexing graphene may be the most fundamental method for controlling its electrical properties, according to calculations by theoretical physicists at Rice University and in Russia. The researchers at the Rice lab of Boris Yakobson in association with Moscow researchers discovered that the effect could possibly occur in nanocones and also other graphene forms.

 

The researchers found that the so called electronic flexoelectric effect which involves manipulation of electronic properties a graphene sheet can be achieved by twisting the graphene in a particular way.

The work could be useful for applications that involve elements in flexible touchscreens or memory chips that store bits by tweaking the electric dipole moments of carbon atoms.

A typical graphene is an atom-thick sheet of carbon that is conductive in nature. The electrical charges of the atoms balance each other across the plane. However, on the concave side, the graphenes curvature compresses the electron clouds of the bonds while it expands them on the convex side. This results in the alteration of electric dipole moments that regulate the way in which polarized atoms interact with external electric fields.

The findings of the research published in the American Chemical Societys Journal of Physical Chemistry Letters suggest that it is possible to determine the flexoelectric effect of graphene, which is in the form of a cone of any length or size.

The researchers computed the dipole moments for single atoms in a graphene lattice using density functional theory and calculated their cumulative effect. They showed that their technique can also be applied to other complex shapes including wrinkled sheets or distorted fullerenes to calculate the effect. They have also analyzed most of these shapes.

While the dipole moment is zero for flat graphene or cylindrical nanotubes, in between there is a family of cones, actually produced in laboratories, whose dipole moments are significant and scale linearly with cone length.

Yakobson

He added that carbon nanotubes are seamless graphene cylinders which do not exhibit a total dipole moment. The vector-induced moments cancel out each other when not in zero.

However, this is not the case with a cone. Here, the balance of positive and negative charges differs for each atom owing to slightly varying stresses on the bonds with changes in the diameter. The researchers also pointed out that the atoms in the edge of the cone also contribute electrically. Further, analysis of two cones that are docked edge-to-edge made them cancel out, thereby making the calculations simple.

One possibly far-reaching characteristic is in the voltage drop across a curved sheet. It can permit one to locally vary the work function and to engineer the band-structure stacking in bilayers or multiple layers by their bending. It may also allow the creation of partitions and cavities with varying electrochemical potential, more ‘acidic’ or ‘basic,’ depending on the curvature in the 3-D carbon architecture.

Yakobson

The studys co-authors include Alexander Kvashnin, a graduate student at the Moscow Institute of Physics and Technology and a researcher at the Technological Institute of Superhard and Novel Carbon Materials, and Pavel Sorokin, who has appointments at the Technological Institute of Superhard and Novel Carbon Materials and the National University of Science and Technology, Moscow. Both are former members of the Yakobson Group at Rice.

Yakobson is Rices Karl F. Hasselmann Professor of Materials Science and NanoEngineering, a professor of chemistry and a member of Rice’s Richard E. Smalley Institute for Nanoscale Science and Technology.

The research work was supported by the Russian Federation, Moscow State University, the Russian Academy of Sciences and the Air Force Office of Scientific Researchs Multidisciplinary University Research Initiative. The National Science Foundation and the Air Force Office of Scientific Research supported the work at Rice.

< Previous 3D Mapping of Carbon Nanotube Distrib...ARPA-E Awards PARC Funding to Develop... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 国产乡下三片 | 最近最新视频中文字幕4 | 狠狠操她 | 美女免费视频一区二区三区 | 国产大片一区 | 91热久久免费频精品动漫99 | a级黄色毛片三 | 国产美女在线一区二区三区 | 免费在线观看黄网站 | 激情综合色五月丁香六月亚洲 | 欧美a在线观看 | 狠狠色狠狠色综合日日32 | 激情免费网站 | 制服丝袜在线视频 | 国产婷婷色一区二区三区深爱网 | 欧美性猛交xxx嘿人猛交 | 国产女人91精品嗷嗷嗷嗷 | 狠狠色噜噜综合社区 | 亚洲国产欧美国产综合一区 | 一级黄色夫妻录像 | 外国一级黄色毛片 | 色天天综合网 | 国产日韩美国成人 | 色综合a怡红院怡红院首页 色综合久久久久久888 | 亚洲第一页中文字幕 | 成年视频xxxxx免费播放软件 | 久久午夜一区二区 | 久久精品免观看国产成人 | 91免费网站 | 成年人在线观看免费视频 | 久久国产成人精品国产成人亚洲 | 精品国产免费观看久久久 | 日韩成人精品 | 欧美高清视频手机在在线 | 国产色婷婷精品综合在线 | 91在线精品你懂的免费 | 欧美成视频人免费淫片 | 日本伊人精品一区二区三区 | 美女啪啪网站又黄又免费 | 欧美日韩国产高清精卡 | 亚洲欧美日韩精品久久亚洲区色播 |