轻点灬大ji巴太粗太长了h-轻点灬大ji巴太粗太长了啊h-轻点灬大ji巴太粗太长了爽文-轻点灬大ji巴太大太深了-japan高清视频乱xxxxx-jiuma和我啪啪

新聞動態(tài)
NEWS
Location:Chinese Academy of Sciences > NEWS  > Graphene Graphene

Graphene and nanotube carpets for energy storage

Come: Chinese Academy of Sciences    Date: 2013-02-02 20:54:37


Researchers at Rice University in the US have made a new hybrid microsupercapacitor from graphene and carbon nanotube carpets with electrochemical properties that could come in useful for portable electronics and renewable power applications. At 2.42 mWh/cm3 in an ionic liquid, the device also has twice the energy density per volume of conventional aluminium electrolytic capacitors.

The hybrid microsupercapacitor
Capacitors are devices that store electric charge. Supercapacitors, more accurately known as electric double-layer capacitors or electrochemical capacitors, can store much more charge because of the double layer formed at an electrolyte–electrode interface when voltage is applied.
As the demand for portable electronics increases, researchers are now turning their attention to microcapacitors for energy storage. Although a variety of materials, such as carbide-derived carbon, onion-like carbon and laser-reduced graphene, have been studied, none of these seems to be compatible with line-filtered alternating currents of 120 Hz.
120 Hz AC line filtering smooths the so-called leftover AC ripple on direct current voltage buses in electronic devices powered by conventional power sources. The full-wave rectified 60 Hz AC power is then filtered to produce pure DC voltage. Such filtering is especially important in renewable electrical power produced by wind or hydroelectric turbines in which frequencies can vary because of the irregularities in the flow of wind and water.
Impedance phase angle

Scientists usually characterize filtering efficiency using the “impedance phase angle” at 120 Hz. Although aluminium electrolytic capacitors (AECs) are currently used in such applications, these devices do suffer from the fact that they have relatively low energy densities. Supercapacitors could come into their own here, but there is one problem: the phase angle of commercial devices at 120 Hz is close to 0°. 
 

A team led by James Tour and Douglas Natelson at Rice is now saying that hybrid supercapacitors made from graphene and CNT carpets show impedance angles as large as –81.5° at 120 Hz frequencies, which is comparable to the values seen in AECs. “These high angles are most certainly thanks to the seamless interface between the nanotube-graphene junctions in the device,” said team member Jian Lin.
Promising properties
The new devices also have specific capacitances of up to 2.16 mF/cm2 in aqueous electrolytes and 3.93 mF/cm2 in ionic ones – figures that compare well to those seen for commercial supercapacitors. What is more, the measured discharge rate of up to 400 V/s is hundreds of times higher than that seen in most supercapacitors and allows the devices to deliver a theoretical maximum power density of 115 W/cm3, even in aqueous electrolytes. In ionic liquids, the energy density is as high as 2.42 mWh/cm3.
"All of these characteristics mean that such hybrid devices could be ideal as discrete power sources in future electronics," Lin told nanotechweb.org.
The Rice team made its microsupercapacitors using conventional photolithography on Si/SiO2 substrates, followed by deposition of a 10 nm chromium adhesion layer and a 450 nm nickel-graphene growth catalyst layer. Few-layer graphene was then grown on the patterned nickel electrodes by chemical vapour deposition (CVD) and catalyst particles of Fe/Al2O3 patterned and deposited on the few-layer graphene. In the final step, CNT carpets were synthesized on the graphene by CVD.
"Since the 3D hybrid material also has fantastic electrical conductivity and high surface area, it would now be interesting for us to look into other applications for these supercapacitors, such as advanced electrodes for lithium ion batteries," said Lin.

The current work is reported in Nano Letters.
 

< Previous Gated graphene makes high-contrast mo...Haydale launches graphene based inks ... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 欧美三级成人 | 亚洲人成在线观看一区二区 | 激情五月激情综合色区 | 一区二区三区国产精品 | 人人干人 | 精品欧美一区二区三区精品久久 | 精品一区二区三区在线观看视频 | 中文字幕日韩精品亚洲七区 | 亚洲国产m3u8在线观看 | 曰批视频在线观看 | 成人免费网址在线 | 日本三级黄色录像 | 一级毛片免费视频网站 | 天天射综合| 全免费午夜真人毛片视频 | 波多野结衣视频在线观看 | 在线国产区 | 一级片按摩 | 亚洲欧洲日产国码久在线观看 | 在线播放一区二区三区 | 日本人真淫视频一区二区三区 | 久久精品国产2020 | 三级黄视频| 乡村乱肉第19部全文小说 | 久草综合在线视频 | 成 人 a v免费视频 | 二区三区不卡不卡视频 | 夜夜爽免费视频 | 亚洲男女一区二区三区出奶水了 | 老司机午夜精品 | 翁熄性放纵苏玥完整小说 | 欧美日本在线一区二区三区 | 日本中文在线播放 | 一丝不遮视频免费观看 | 中国国产成人精品久久 | 日本三级欧美三级香港黄 | 久久a视频 | 亚洲 欧美 成人日韩 | 欧美成人一级 | 成人超污免费网站在线看 | 黄污视频|